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Abstract

Alternating least-squares (ALS) is a simple yet effective solver for canonical corre-
lation analysis (CCA). In terms of ease of use, ALS is arguably practitioners’ first
choice. Despite recent provably guaranteed variants, the empirical performance
often remains unsatisfactory. To promote the practical use of ALS for CCA, we
propose truly alternating least-squares. Instead of approximately solving two
independent linear systems, in each iteration, it simply solves two coupled linear
systems of half the size. It turns out that this coupling procedure is able to bring
significant performance improvements in practical setting. Inspired by the acceler-
ated power method, we further propose faster alternating least-squares, where
momentum terms are introduced into the update equations. Theoretically, both
algorithms enjoy linear convergence rate. To make faster ALS even more practical,
we put forward adaptive alternating least-squares to avoid tuning the momentum
parameter, which is as easy to use as the plain ALS while retaining advantages
of the fast version. Experiments on several datasets empirically demonstrate the
superiority of the proposed algorithms to several recent variants of CCA solvers.

1 Introduction

Canonical correlation analysis [11] is a classical statistical tool for finding directions of the maximal
correlations between data sources of the same phenomenon, which has found widespread applications
in high-dimensional data analysis such as regression [12], clustering [5], classification [13], and word
embedding [7], to name a few. Let X ∈ Rdx×n and Y ∈ Rdy×n be the data matrices1 of two views
with empirical cross-covariance matrix and two auto-covariance matrices given by

Cxy =
1

n
XY>, Cxx =

1

n
XX> + rxI, Cyy =

1

n
YY> + ryI,

respectively, where rx and ry are positive regularization parameters for avoiding ill-conditioned
matrices and I represents the identity matrix of the appropriate size. CCA aims to find projection
matrices Φ ∈ Rdx×k and Ψ ∈ Rdy×k such that the cumulative correlation between two views is
maximized after the projection of each view [19, 16]:

max
Φ>CxxΦ=Ψ>CyyΨ=I

tr(Φ>CxyΨ). (1)

It is well-known that the global optimum to Problem (1), which is also known as the canonical
subspaces, can be obtained via a k-truncated singular value decomposition (SVD) on the whitened

1We assume that X and Y are row centered at the origin.
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cross-covariance matrix C = C
− 1

2
xx CxyC

− 1
2

yy , i.e.,

(U,V) = (C
− 1

2
xx P,C

− 1
2

yy Q), (2)

where P and Q are the top-k left and right singular subspaces of C. Simply applying the partial
SVD of C by inverting matrices Cxx and Cyy, however, is computationally prohibitive for high-
dimensional datasets, as the complexity of matrix inversions can be as high as O(d3), where d =
max{dx, dy}, and the data sparsity of X and Y can not be utilized then.

To address this computational issue of CCA, there have been a range of relevant algorithms proposed
recently in different settings [22, 15, 16, 10, 20, 1, 8, 2, 6, 4]. In this work, we focus on the block
and off-line setting where k > 1 and the collection of instance pairs, i.e., (X,Y), is ready. In
terms of ease of use, in this setting, alternating least-squares (ALS) [20, 10] is arguably the first
choice from a user’s perspective, by virtue of the simplicity, the fewest parameters, and guaranteed
convergence. Nonetheless, as we will see in our experiments, its effectiveness, especially solutions
of high accuracy, often comes at the cost of slow convergence. Particularly, [20] considered inexact
alternating least-squares for the vector case k = 1. However, in order for the block case to work, one
has to set the block size to 2k rather than k and needs a post-processing step to randomly project the
resulting solution of 2k-dimensional subspace onto a k-dimensional subspace, as is demonstrated
in [10]. The update equations of alternating least-squares in both [20] and [10] are derived from the

power method on an augmented real symmetric matrix, i.e., A =

(
Cxy

C>xy

)
. However, the

power method can only find top eigenspaces corresponding to the largest eigenvalues in magnitude
rather than the real part. Given the special eigen-structure of A [23, 20, 10], the block size has to be
at least 2k to recover a top-k canonical subspace (U,V). It is clear that this way that the block CCA
solver proceeds not only causes a significant increase in both time and space, but may also degrade
the quality of the final solution due to the random projection.

Thus, the question one would naturally ask is:

Is there any variant of ALS that is able to recover (U,V) with block size k?

In this paper, we offer a simple answer in the affirmative. Recall that the power iteration in [20, 10]
leads to simultaneous approximations to exact iterates Φ?

t and Ψ?
t on two canonical variables and

ends up solving two independent linear systems. What we are going to change here is to do sequential
approximations to Φ?

t and Ψ?
t with block size k, arriving at an algorithm that approximately solves

two coupled linear systems of half the size per iteration (see Algorithm 1). To stress the difference, the
proposed algorithm for CCA is called truly alternating least-squares (TALS). It does not only inherit
theoretical properties of global convergence and linear complexity from alternating least-squares but
also enjoys a speedup roughly by a factor of σk

σk+σk+1
, where σk represents the k-th largest singular

value of C. Most important to practitioners is that remarkable performance improvements can be
achieved in practice as will be shown in our experiments, albeit with a slight algorithmic change.

Moreover, we develop another variant of ALS. Inspired by a recent work on accelerated power
method [21], we try to think about faster alternating least-squares (FALS) for CCA with momentum
acceleration. The main idea is to add a momentum term to the update equations of the iterates Φt and
Ψt on top of the truly alternating least-squares, which gives rise to Algorithm 2. Compared to other
fast methods, e.g., shift-and-invert preconditioning based methods [20, 1], especially for the block
case, the advantage here is that the fast version takes over the simple structure of the plain one and
updating iterates remains in a sequential manner. At least, locally linear convergence can be achieved.
On the other hand, the algorithm is no longer almost parameter-free due to the momentum parameter
which needs to be tuned. Although we can leverage this parameter to pursue better performance by
hand-tuning, it requires multiple runs of the algorithm which computationally may not be affordable
in practice. To tackle this, we put forward adaptive alternating least-squares (AALS) with automatic
momentum tuning during iterations, such that it is as easy to use as the plain version and at the same
time expected to retain the advantages of the fast one. Experiments show that the adaptive version
achieves comparable performance to its predecessor, i.e., the faster alternating least-squares, and
often outperforms the truly alternating least-squares.
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The rest of the paper is organized as follows. We discuss recent literature in Section 2 and then
present our algorithms with convergence guarantees on truly alternating least-squares in Section 3
and the fast versions in Section 4. Our experimental studies are reported in Section 5. Finally, the
paper is concluded by discussions in Section 6.

2 Related Work

There is a rich literature on CCA. We focus here on the block and off-line algorithms proposed
recently. [3] proposed a randomized CCA algorithm for a pair of tall and thin matrices. It first
performs a randomized dimensionality reduction on the matrices and then runs an off-the-shelf CCA
algorithm for the resulting matrices. However, it seems to have quite a high complexity, and as was
pointed out in [16], it does not work for large dx and dy. To cope with this issue, on top of [3], the
problem is cast into solving a sequence of iterative least-squares in [15]. But only sub-optimal results
can be achieved this way due to the coarse approximation, which was noted in [10]. [16] proposed an
iterative method with a low per-iteration cost, but there is no guarantee of global convergence and the
performance is worse than CCALin, i.e., alternating least-squares proposed in [10]. These algorithms
directly solve Problem (1).

Alternating least-squares solves Problem (1) indirectly, by targeting an equivalent problem, i.e.,
generalized eigenspace computation, in the following form:

max
Ω>BΩ=I

tr(Ω>AΩ),

where B = diag(Cxx,Cyy). [20] proposed inexact alternating least squares with a sub-linear
convergence analysis for the vector case k = 1. The block case was considered with block size
set to 2k and given a linear convergence analysis in [10]. While both algorithms enjoys global
convergence, they have the drawbacks mentioned in Section 1. In this paper, our proposed truly
alternating least-squares is a natural extension of above two algorithms without the drawbacks.

Most of the fast CCA algorithms rely on the shift-and-invert preconditioning paradigm that is
originally designed for eigenvector computation [9]. [20] extended the paradigm to the CCA setting
and achieved better performance than alternating least-squares for the vector case. [1] further extended
to the block setting, using the vector version as a meta algorithm to recursively find top-k canonical
subspaces via deflation. While both algorithms have theoretically faster convergence, pragmatic
concerns arise that the shift-and-invert preconditioning paradigm bears a complicated algorithm
structure and is difficult to deploy in practice, especially in the block setting. The deployment is
built upon a number of tuning parameters including the nontrivial estimation of the spectral gap [20].
The deflation further complicates the task in the block case. In contrast, the fast CCA algorithm
presented in this paper follows the momentum acceleration scheme that is also originally designed for
eigenvector computation [21], and outperforms alternating least-squares, particularly for the block
case. The underlying algorithm is simple with much fewer parameters. Furthermore, the adaptive
version does not even need to tune the momentum parameter, making it more practical.

We also note that there are a number of recent CCA algorithms that handle the streaming setting [22,
8, 2, 6, 4]. It will be interesting to investigate how our algorithms extend to this setting.

3 Truly Alternating Least-Squares (TALS)

In this section, we detail our proposed truly alternating least-squares (TALS) for CCA, starting from
the existing alternating least-squares solvers. Update equations of alternating least-squares in [20]
can be written as  φ̃t+1 = C−1xxCxyψt + ξt, φt+1 = φ̃t+1

‖φ̃t+1‖2

ψ̃t+1 = C−1yy C>xyφt + ηt, ψt+1 = ψ̃t+1

‖ψ̃t+1‖2

, (3)

where φt ∈ Rdx×1, ψt ∈ Rdy×1, and ξt, ηt are errors incurred in approximating C−1xxCxyψt and
C−1yy C>xyφt by least-squares, respectively. For example, C−1xxCxyψt is the exact solution to the linear
systems of equations Cxxφ̃ = Cxyψt with unknowns φ̃, or equivalently the following least-squares
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Algorithm 1 TALS-CCA
1: Input: T, k, data matrices X, Y.
2: Output: approximate top-k canonical subspaces (ΦT ,ΨT ).
3: Initialize Φ0 = GSCxx(Φinit) ∈ Rdx×k, Ψ0 = GSCyy (Ψinit) ∈ Rdy×k, where entries of

Φinit,Ψinit are i.i.d. standard normal samples.
4: for t = 1, 2, · · · , T do
5: Approximately solve least-squares

Φ̃t ≈ arg min
Φ̃∈Rdx×k

lt(Φ̃) =
1

2n
‖X>Φ̃−Y>Ψt−1‖2F +

rx
2
‖Φ̃‖2F

with initial Φ̃(0) = Φt−1(Φ
>
t−1CxxΦt−1)

−1(Φ>t−1CxyΨt−1).

6: Φt = GSCxx(Φ̃t).
7: Approximately solve least-squares

Ψ̃t ≈ arg min
Ψ̃∈Rdy×k

st(Ψ̃) =
1

2n
‖Y>Ψ̃−X>Φt‖2F +

ry
2
‖Ψ̃‖2F

with initial Ψ̃(0) = Ψt−1(Ψ
>
t−1CyyΨt−1)

−1(Ψ>t−1C
>
xyΦt).

8: Ψt = GSCyy (Ψ̃t).
9: end for

problem:

min
φ̃∈Rdx×1

lt(φ̃) =
1

2n
‖X>φ̃−Y>ψt‖+

rx
2
‖φ̃‖22.

The approximation can be done by running a least-squares solver, warm-started by φt, for only a few
iterations. The block version for k > 1 in [10] needs to take the following form:{

Φ̃t+1 = C−1xxCxyΨt + ξt, Φt+1 = Φ̃t+1(Φ̃
>
t+1CxxΦ̃t+1 + Ψ̃>t+1CyyΨ̃t+1)

− 1
2

Ψ̃t+1 = C−1yy C>xyΦt + ηt, Ψt+1 = Ψ̃t+1(Φ̃
>
t+1CxxΦ̃t+1 + Ψ̃>t+1CyyΨ̃t+1)

− 1
2

, (4)

where Φt ∈ Rdx×2k and Ψt ∈ Rdy×2k, rather than Φt ∈ Rdx×k and Ψt ∈ Rdy×k. It is easy to see
that update equations in both (3) and (4) yield two independent linear systems. It turns out that the
independence hampers the empirical performance of alternating least-squares for CCA.

To overcome the drawbacks especially for the block case, we propose the following truly (and inexact)
alternating least-squares,{

Φ̃t+1 = C−1xxCxyΨt + ξt, Φt+1 = Φ̃t+1(Φ̃
>
t+1CxxΦ̃t+1)

− 1
2

Ψ̃t+1 = C−1yy C>xyΦt+1 + ηt+1, Ψt+1 = Ψ̃t+1(Ψ̃
>
t+1CyyΨ̃t+1)

− 1
2

, (5)

where we now have Φt ∈ Rdx×k and Ψt ∈ Rdy×k. Compared to (3) and (4), two induced linear
systems in (5) are coupled together and of half the size in the block setting. Corresponding algorithmic
steps are given in Algorithm 1, where subroutine GSH(·) performs the generalized Gram-Schmidt
orthogonalization process with inner product 〈, 〉H for a positive definite matrix H. Note that our
initials to the least-squares solver are different from those in both [20] and [10].

Recall that P and Q are the top-k left and right singular subspaces of C with respect to their respective
Euclidean metrics, corresponding to singular values Σ = diag(σ1, · · · , σk) in descending order, i.e.,
σi ≥ σj for 1 ≤ i < j ≤ rank(C). Thus, by Equation (2), ground truth U and V are the counterparts
with respect to metrics Cxx and Cyy, respectively. Let θt = max{θmax(Φt,U), θmax(Ψt,V)},
where θmax(Φt,U) represents the largest principal angle between subspaces2 Φt and U in underlying
metric Cxx, i.e., θmax(Φt,U) = cos−1(σmin(U

>CxxΦt)). Let nnz(X) represent the number of
nonzero entries in X and κ(Cxx) the condition number of Cxx. Algorithm 1 then has properties that
are described by the following theorem.

2For brevity we use Φt to represent the subspace spanned by columns of Φt or one of its bases in the
underlying metric Cxx without any risk of confusion.
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Algorithm 2 FALS-CCA
1: Input: T, k, momentum parameter β, data matrices X, Y.
2: Output: approximate top-k canonical subspaces (ΦT ,ΨT ).
3: Initialize Φ−1 = 0 ∈ Rdx×k, Φ0 = GSCxx(Φinit) ∈ Rdx×k, Ψ0 = GSCyy (Ψinit) ∈ Rdy×k,

where entries of Φinit,Ψinit are i.i.d. standard normal samples.
4: for t = 1, 2, · · · , T do
5: Approximately solve least-squares

Φ̃t ≈ arg min
Φ̃∈Rdx×k

lt(Φ̃) =
1

2n
‖X>(Φ̃ + βΦt−2)−Y>Ψt−1‖2F +

rx
2
‖Φ̃ + βΦt−2‖2F

with initial Φ̃(0) = Φt−1(Φ
>
t−1CxxΦt−1)

−1(Φ>t−1CxyΨt−1).

6: Φt = GSCxx(Φ̃t).
7: Approximately solve least-squares

Ψ̃t ≈ arg min
Ψ̃∈Rdy×k

st(Ψ̃) =
1

2n
‖Y>(Ψ̃ + βΨt−1)−X>Φt‖2F +

ry
2
‖Ψ̃ + βΨt−1‖2F

with initial Ψ̃(0) = Ψt−1(Ψ
>
t−1CyyΨt−1)

−1(Ψ>t−1C
>
xyΦt).

8: Ψt = GSCyy (Ψ̃t).
9: end for

Theorem 1 Given data matrices X and Y, TALS-CCA computes a dx × k matrix ΦT and a
dy × k matrix ΨT which are estimates of top-k canonical subspaces (U,V) with an error of ε,

i.e., Φ>TCxxΦT = Ψ>TCyyΨT = I and tan θT ≤ ε, in T = O(
σ2
k

σ2
k−σ

2
k+1

log 1
ε cos θ0

) iterations. If
Nesterov’s accelerated gradient descent is used as the least-squares solver, the running time is at
most

O(
kσ2

k

σ2
k − σ2

k+1

nnz(X,Y)κ(X,Y)(log
1

cos θ0
log

σ1
(σ2
k − σ2

k+1) cos θ0
+

log
1

ε
log

σ1
σ2
k − σ2

k+1

) +
k2σ2

k

σ2
k − σ2

k+1

max{dx, dy} log
1

ε cos θ0
),

where nnz(X,Y) = nnz(X) + nnz(Y) and κ(X,Y) = max{κ(Cxx), κ(Cyy)}.

Note that random initializations to Φ0 and Ψ0 result in cos θ0 > 0 with high probability, by
Lemma 13 in [10]. Thus, TALS-CCA is globally and linearly convergent. Proofs are provided in the
supplementary material. Compared to alternating least-squares, e.g., CCALin in [10], it is roughly
faster by a factor of σk

σk+σk+1
, whereas empirical improvements are often more pronounced. Note

that it makes a difference especially for the cases of a small singular value gap σk − σk+1.

4 Faster Alternating Least-Squares (FALS)

In this section, we consider the momentum acceleration for CCA, motivated by accelerated power
method for eigenvector computation [21]. To derive update equations for faster alternating least-
squares (FALS), we first have CCA cast into the setting of eigenvector computation on real symmetric
matrices and then introduce the momentum to speedup.

Recall that

A =

(
Cxy

C>xy

)
and B =

(
Cxx

Cyy

)
.

Let

W̃t = B
1
2

(
Φ̃t

Ψ̃t

)
∈ R(dx+dy)×2k and Wt = B

1
2

(
Φt

Ψt

)
∈ R(dx+dy)×2k.

The momentum acceleration applied to B−
1
2 AB−

1
2 then yields that

W̃t+1 = B−
1
2 AB−

1
2 Wt − βWt−1, Wt+1 = W̃t+1(W̃

>
t+1W̃t+1)

− 1
2 , (6)
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Algorithm 3 AALS-CCA
1: Input: T, k, data matrices X, Y.
2: Output: approximate top-k canonical subspaces (ΦT ,ΨT ).
3: Initialize Φ−1 = 0 ∈ Rdx×k, Φ0 = GSCxx(Φinit) ∈ Rdx×k, Ψ0 = GSCyy (Ψinit) ∈ Rdy×k,

where entries of Φinit,Ψinit are i.i.d. standard normal samples.
4: for t = 1, 2, · · · , T do

5: Set βt,1 =
1

4
min

1≤i≤k
(Σ

(t−1,1)
ii )2, where Σ(t−1,1) = (Φ>t−1CxxΦt−1)

−1(Φ>t−1CxyΨt−1).

6: Approximately solve least-squares

Φ̃t ≈ arg min
Φ̃∈Rdx×k

lt(Φ̃) =
1

2n
‖X>(Φ̃+ βt,1Φt−2)−Y>Ψt−1‖2F +

rx
2
‖Φ̃+ βt,1Φt−2‖2F

with initial Φ̃(0) = Φt−1Σ
(t−1,1).

7: Φt = GSCxx
(Φ̃t).

8: Set βt,2 =
1

4
min

1≤i≤k
(Σ

(t−1,2)
ii )2, where Σ(t−1,2) = (Ψ>t−1CyyΨt−1)

−1(Ψ>t−1C
>
xyΦt).

9: Approximately solve least-squares

Ψ̃t ≈ arg min
Ψ̃∈Rdy×k

st(Ψ̃) =
1

2n
‖Y>(Ψ̃ + βt,2Ψt−1)−X>Φt‖2F +

ry
2
‖Ψ̃ + βt,2Ψt−1‖2F

with initial Ψ̃(0) = Ψt−1Σ
(t−1,2).

10: Ψt = GSCyy
(Ψ̃t).

11: end for

where −βWt−1 is known as the momentum term and β is the momentum parameter. Expanding
the above update equation into two inexact update equations in Φt, Ψt and having them coupled
together as with TALS, we arrive at our faster (truly and inexact) alternating least-squares as follows:{

Φ̃t+1 = C−1xxCxyΨt − βΦt−1 + ξt, Φt+1 = Φ̃t+1(Φ̃
>
t+1CxxΦ̃t+1)

− 1
2

Ψ̃t+1 = C−1yy C>xyΦt+1 − βΨt + ηt+1, Ψt+1 = Ψ̃t+1(Ψ̃
>
t+1CyyΨ̃t+1)

− 1
2

,

where Ψt ∈ Rdx×k and Φt ∈ Rdy×k. The algorithmic steps are given in Algorithm 2 which
keeps as simple as the plain alternating least-squares. Despite the simplicity, the analysis of faster
convergence is very difficult (see our discussions in Section 6). Nonetheless, it is at least locally
linearly convergent, as stated in the following theorem.

Theorem 2 Given data matrices X and Y, FALS-CCA computes a dx × k matrix ΦT and a
dy × k matrix ΨT which are estimates of top-k canonical subspaces (U,V) with an error of ε, i.e.,

Φ>TCxxΦT = Ψ>TCyyΨT = I and tan θT ≤ ε, in T = O(
σ2
k−cσ1β

σ2
k−σ

2
k+1−4cσ1β

log 1
ε cos θ0

) iterations if

θ0 ≤ π
4 . If Nesterov’s accelerated gradient descent is used as the least-squares solver, the running

time is at most

O(
k(σ2

k − cσ1β)
σ2
k − σ2

k+1 − 4cσ1β
nnz(X,Y)κ(X,Y)(log

1

cos θ0
log

σ1
(σ2
k − σ2

k+1) cos θ0
+

log
1

ε
log

σ1
σ2
k − σ2

k+1

) +
k2(σ2

k − cσ1β)
σ2
k − σ2

k+1 − 4cσ1β
max{dx, dy} log

1

ε cos θ0
),

where c > 0 is a constant.

Clearly, the momentum parameter plays a key role for Algorithm 2 to work. It is central for us to
figure out sensible ways to set it in practice. Given the tight analysis (see Theorem 11 in [21]) for the

exact update (6) in Wt, the optimal value of β should be around σ2
k+1

4 . On the other hand, it holds
for the optimal solution that

CxyV = CxxUΣ, C>xyU = CyyVΣ.
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We thus can write that

(U>CxxU)−1U>CxyV = Σ = (V>CyyV)−1V>C>xyU.

Accordingly, we have the following estimate options of Σ for sufficiently large t:

Σ(t,1) , (Φ>t CxxΦt)
−1(Φ>t CxyΨt),

Σ(t,2) , (Ψ>t CyyΨt)
−1(Ψ>t C>xyΦt+1),

Σ(t,3) , (Φ>t CxxΦt + Ψ>t CyyV)−1(Φ>t CxyΨt + Ψ>t C>xyΦt).

Before iterates Φt and Ψt converge, min
1≤i≤k

Σ
(t,j)
ii is strictly less than σk in general. Meanwhile,

σk+1 is bounded above by σk. Therefore, our first strategy for approximating the optimal momentum
parameter is to run a small number of iterations of TALS, which can be viewed as a burning process,

and then set βj =
1

4
min

1≤i≤k
(Σ

(T0,j)
ii )2 for FALS. Denote the resulting algorithm as FALS-T0.

Adaptive Alternating Least-Squares (AALS) To further avoid choosing burning parameter T0,
the second strategy we propose is to automatically and adaptively adjust momentum parameter β
during iterations, as described in Algorithm 3. Compared to Algorithm 2, there is no additional cost
in running AALS. It keeps as easy to use as the plain alternating least-squares while retaining the
advantages of the fast version.

5 Experiments

In this section, we examine and compare the empirical behaviors of both existing and our alternating
least-squares algorithms. Three real-world datasets are used: Mediamill [18], JW11 [17], and
MNIST [14]. See Table 1 for the statistics and descriptions. They are commonly used to test CCA

Table 1: Statistics of Datasets

DATA Description dx dy n
Memdiamill images and its labels 100 120 30000
JW11 acoustic and articulation measurements 273 112 30000
MNIST left and right halves of images 392 392 60000
Youtube UCI Youtube audio and vision streams 64 1024 122041

solvers [20]. In order to show the inability of the plain alternating least-squares with block size k
to solve CCA, we adapt alternating least-squares in both [20] and [10] to block size k, denoted as
ALS-k and CCALin-k, respectively. Note that the post-processing step is not needed any more for
CCALin-k. Two algorithms differ only in the initial to the least-squares solver. The original CCALin
algorithm is also included as a baseline. They are compared with our TALS, FALS-T0 (i.e., FALS
with burning parameter T0), and AALS. Particularly, T0 ∈ {4, 6} is used. Regularization parameters
are fixed to rx = ry = 0.1. Stochastic variance reduced gradient (SVRG) is the least-squares solver
we use for each algorithm. Throughout the experiments the solver runs 2 epochs with each running n
iterations with constant step-sizes αΦ = 1

maxi ‖xi‖22
for Φt and αΨ = 1

maxi ‖yi‖22
for Ψt, where xi is

the i-th column of X. All the algorithms were implemented in MATLAB, and run on a laptop with 8
GB memory. Quality measures we use are as follows:

• sin2 θu , sin2 θmax(Φt,U), squared sine value of largest principal angle between Φt and U;

• sin2 θv , sin2 θmax(Ψt,V), squared sine value of largest principal angle between Ψt and V,

where ground truth (P,Σ,Q) is obtained by MATLAB’s svds function for evaluation purpose.
Smaller is better for each measure. It is worth noting that the two measures are more indicative of the
performance of all the algorithms considered here, compared to the relative objective function error
measure

f? − f
f?

,
tr(Σ)− tr(Φ>t CxyΨt)

tr(Σ)
,
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Figure 1: Performance of different ALS algorithms for CCA.

because they do not directly optimize the objective function of Problem (1), i.e., tr(Φ>CxyΨ),
especially for the CCALin. Convergence results in terms of (f? − f)/f? are reported in the
supplementary material.

Convergence curves of all the considered ALS algorithms are plotted in a 4× 3 array of figures in
Figure 1 with a column for each dataset. Upper and lower halves of the rows of figures correspond
to sin2 θu and sin2 θv, respectively, while upper and lower rows in each half correspond to results
in running time and passes over data, respectively. Note that the curve patterns in running time and
passes are not necessarily the same, e.g., for CCALin. From these empirical results, we first observe
that both ALS-k and CCALin-k indeed fail to work as the values of both measures always remain
high during iterations across datasets. This is because the target ground-truth of both algorithms
does not cover top-k canonical subspaces. Second, it takes a much longer time for the CCALin than
our ALS algorithms to find a solution even with low precision. Third, our TALS achieves better
performance than the CCALin by a large margin in both measures, demonstrating the advantage of
the coupling in ALS for CCA. Last, further speedups over TALS are observed for the fast versions,
which showcases the potential of the momentum acceleration for CCA. Particularly, the adaptive
version, i.e., AALS, without the need to tune the momentum parameter and set the burning parameter,
performs equally well as FALS-T0, proving its practical value to certain extent.

8



Additional experiments are provided in the supplementary material, aiming to demonstrate: 1) the
performance of all the considered algorithms with varying block sizes; 2) the performance of our ALS
algorithms especially the fast versions in comparison with the shift-and-invert (SI) preconditioning
method [20] in the vector setting; 3) the performance of the algorithms on more datasets (n = 122041).
These experiments indicate that the truly alternating least-squares sometimes can achieve equally
good performance compared to its fast versions. In the vector case, the faster alternating least-squares
may even work better than the SI method which, though is given the advantage of the knowledge on
the spectral gap at k = 1 and other tuning parameters.

6 Discussion

In this work, we study alternating least-squares as a block CCA solver. Noting the drawbacks of
current alternating least-squares methods, we propose the truly alternating least-squares which only
needs to update equations of half the size due to coupling. Both theory and practice show that the
coupling can significantly improve the performance of alternating least-squares. On top of that, we
further propose faster alternating least-squares with momentum acceleration. To make it practical,
two strategies are put forward to set the momentum parameter. One is to introduce a burning phase to
set it by running the truly alternating least-squares for a few iterations. The other is to automatically
adjust the momentum parameter during iterations, making it as easy to use as the plain alternating
least-squares without sacrificing fast convergence. Experiments show that both strategies work
well. Despite the excellent performance of the fast versions, it lacks of a tight convergence analysis
explaining the empirical behaviors. This seems quite difficult, given that there has been no such theory
thus far on the momentum acceleration for the basic eigenvector computation in a corresponding
setting. The coupling in our context further complicates the analysis. We leave it to our future work
where other settings, e.g., streaming or robust, may be considered as well.
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