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ABSTRACT

Data mapping among different data standards in health
institutes is often a necessity when data exchanges occur
among different institutes. However, no matter rule-based
approaches or traditional machine learning methods, none of
these methods have achieved satisfactory results yet. In this
work, we propose a deep learning method, mixture feature
embedding convolutional neural network (MfeCNN), to con-
vert the data mapping to a multiple classification problem.
Multi-modal features were extracted from different semantic
space with a medical NLP package and powerful feature
embeddings were generated by MfeCNN. Classes as many
as ten were classified simultaneously by a fully-connected
soft-max layer based on multi-view embedding. Experimental
results show that our proposed MfeCNN achieved best results
than traditional state-of-the-art machine learning models and
also much better results than the convolutional neural network
of only using bag-of-words as inputs.

I. INTRODUCTION

Data mapping is often required when data exchange hap-
pened among different institutes using different data standards.
In the health field, for historical reasons, hospitals, pharmaceu-
tical factories, medical insurance companies, and other health-
relevant industries usually have formed their own traditions in
composing documents. Word-class institutes including World
Health Organization, National Institute of Health and Health
Level Seven International (HL7) have made great efforts
in developing international standards for electronic health
information that supports clinical practice and management,
and delivery and evaluation of health services. Most of health
institutes adopt the international standards to a certain degree.
However, inconsistencies are still quite popular due to the
diverse interpretations of the same standard or missing and
errors made by medical staffs. Meanwhile, most of documents
are unstructured or semi-structured with large volumes of free
texts. Consequently, automatic mapping one data source to

another becomes a hot research topic among data science
community or natural language processing (NLP) community.

Data mapping and data transformation play a vital role in
the information integration area. Since decades ago, as the re-
lational database integration requirement arose, lots of research
works have been focusing on the schema mapping problem1,2.
The schema mapping problem involves automatic discovery
of the mapping relationship between source and target data
models. Rahm et al3 classified these schema mapping methods
as schema-only based, instance/content-based and combination
approaches; schema-only based methods discover the mapping
relationship by the schema meta data information4; instance-
based mappings discover the association relationship by the
real instances of data such as the word frequencies, value
patterns and ranges5; combination approaches6 tackle the
mapping with both schema and real instances.

Recently, more researchers apply machine learning and
sophisticated statistical techniques to determine instance level
matching of schema elements. The approaches introduced
by Doan et al7 show that new mappings can be learned
from known mappings to the target schema. Machine learning
algorithms have been used to train models using known
mapping and the models were applied to the new schema
elements to map them to the targets8. The methods acquire
probabilistic knowledge from examples provided by domain
experts in order to train the models. The trained models in a
domain can be applied to new schema mappings in the same
domain9. Our approach is motivated by these works while
we focus particularly on integrating clinical data represented
by different standards, trying to associate these data with a
unified data model, and in the end contributing to seamlessly
exchanging the clinical data.

In this work, we propose a sophisticated machine learn-
ing model, Mixture Feature Embedding Convolutional Neural
Network (MfeCNN) to tackle the task of data mapping. The
innovation of our approach lies in applying deep learning
method to the data mapping problem. Our data, HL7 messages



from health providers, involve semi-structured data, which
uses a non-XML encoding syntax based on segment format,
supported by major medical information system vendors in the
United States. The standards of HL7 v2 allow some custom
fields and quite many fields can contain free text contents.
Meanwhile, the data set we used is very unbalanced and one
target category is very dominant. These characteristics of data
leads to the complex mapping problem and we are trying to
solve the data mapping problem by training an advanced model
with many NLP features.

Basically, we convert the data mapping task to a classi-
fication task. Firstly, many relevant features were extracted
with third-party tools as multi-modal inputs, including bag-
of-words (BOG), part-of-speech (POS), syntax and concepts
10. Secondly, feature embedding representations were learned
with a CNN model to generate feature tensors. Thirdly, these
feature tensors were fed into a multi-view based CNN model to
predict the data mappings. The MfeCNN model was evaluated
on data mapping from HL7 message to CommonSif and
compared with baseline classification models based on Support
Vector Machine (SVM) as well as other deep learning models
like basic CNN. The results show that our model yields
better performance than baseline models and indicate that our
approach is a promising way to resolve the automatic data
mapping problem and able to handle unbalance data. Although
our proposal is tested with the medical field, the methodology
is generic enough to handle any tasks of similar kinds.

II. RELEVANT WORK RELATED TO OUR MODEL

A deep learning method MfeCNN is proposed here to
handle the mapping problem of clinical data. In the input data,
free texts themselves can be regarded as one type of features,
namely BOG. In addition, we retrieve medical codes in the
HL7 data as terms and language-relevant features including
part-of-speech (POS) and syntax among those free texts.
Traditional machine learning models like SVM or Conditional
Random Field (CRF), just treat them as uniformed features
without distinguishing their semantic categories. All those
features are in fact from different semantic spaces and thus
can be regarded from different modals and can be viewed
differently. It is reasonable to construct a multi-modal and
multi-view model for the mapping task. Before delving into
our MfeCNN approach, we will give a quick survey of
previous work related to multi-modal and multi-view models.

Ngiam et al11 proposes an application of deep networks to
learn features over multiple modalities. Their deep network
is based on sparse restricted Boltzmann machines (RBM).
Their system demonstrates the capacity of cross-modal feature
learning, where better features for one modality such as video
can be learned for other modality when multiple modalities
(e.g., audio and video) are given at feature learning stage. This
work gives us inspirations of making use of diverse modals to
learn rich features from health data sets. Multiple modalities
can be extracted from those data sets, including words, syntax
and semantic roles of sentences and terminology codes.

Another work which brings us hunches is twin-view em-
bedding for CNN12. According to the model, variable X1

may have a twin-view embedding (tv-embedding) with re-
gards to any X2 if there exists a function g1 such that
P (X2|X1) = g1(f1(X1), X2), where (X1, X2) ∈ X1 ×
X2. The tv-embedding can be expressed as a function f1.
This proposal makes it possible for current data to find tv-
embedding from unlabeled data and accordingly enhance the
data representation. Further, the learnt tv-embedding can be
integrated into supervised CNN with a compound sigmoid
function as σ(Wṙl(x)+V u̇l(x)+ b). If there are multiple tv-
embeddings, a summation can be added to the former equation
as σ(Wṙl(x)+

∑k
i=1 V

(i)u̇
(i)
l (x)+ b), which can be regarded

as multi-view embedding (mv-embedding).
Our model framework share similarities with both above

models. It is a multimodal model and it employs multi-view
embedding for feature integration. One essential contribution
comes from how we integrate features with multi-view embed-
ding. Features in MfeCNN are from totally different semantic
space or modalities including words, concepts, and syntax.
Different integration functions for multi-view embedding are
deployed as sigmoid functions in MfeCNN.

Usually, word embedding can be constructed with recurrent
neural network (RNN) and long-short-term memory network
(LSTM) to reflect the sequential relationships among words.
However, those models only allow for strictly sequential
information propositions. In human languages, the order and
the dependencies between words and phrases are often im-
portant. A tree-LSTM13 was proposed as a generalization
of LSTMs to tree-structured network topologies to catch the
dependencies between words and phrases and provide better
semantic embeddings of words. In this work, tree-LSTM is
employed to generate compound feature embeddings to enrich
feature modalities for Mfe.

III. NEURAL NETWORK ARCHITECTURE

A. Mixture Feature Embedding Convolutional Neural Network

Admission 
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Embedding Layer
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Prediction Layer
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Input X1 
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Feature tensor

tests found elevated blood sugar for 10 years, dizziness, weakness in January.

Fig. 1. Graphic View of Deep Learning Model for Data Mapping
The structure of our MfeCNN is illustrated in Figure 1. The

MfeCNN model contains three main layers for feature extrac-
tion, mixture feature embedding, and deep network learning,
respectively. In the first layer, a third-party tool cTAKES
(clinical Text Analysis Knowledge Extraction System)14 was
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Fig. 2. Mixture Feature Embedding Layer in Details

employed to extract multi-modal features from the input sen-
tences. The multi-modal features mainly contain Bag-of-words
(BOW) modal, part-of-speech (POS) modal, concept modal
and syntax modal as well as semantic role modal generated by
tree-LSTM. Extracted features form a feature matrix for each
sentence and are fed into Mixture Feature Embedding Layer
with tensor outputs. This layer includes shared representation
model for multi modalities and a convolutional neural network
together with a max-pooling layer to learn feature embedding
presentations as tensors. The mixture feature embedding was
passed to the final deep network layer for model learning
and prediction. The deep network is a convolutional neural
network including a convolution lay and a max pooling layer
followed by a fully-connected softmax layer based on multi-
view embedding for data mapping prediction.

The main novelty in our network architecture is the inclu-
sion of the mixture feature tensor generation layer and multi-
view based prediction layer. The mixture feature embedding
layer allows the network to utilize rich external resources
and generate more expressive representations of features. The
prediction layer with multi-view embedding can incorporate
the multi-modal feature embeddings in a multi-view style and
has the potential to enhance the prediction performance of
data mapping. The details of the feature tensor generations
and multi-view based prediction are given in next subsections.

B. Convolutional Neural Network

Convolutional neural network (CNN) here has been de-
ployed in two different stages of our model training. Firstly, a
basic CNN model was used for mixture feature embedding
to generate embedding representation of feature tensor as
depicted in Figure 2 and then a multi-view based CNN model
is employed for the model learning of the data mapping
problem as illustrated in Figure 1. Both the CNN models
are a three-layer model and have a convolutional layer, a
max-pooling layer and a fully-connected softmax prediction
layer. The main difference between the two CNN models is
the prediction layer and multi-view based CNN model has a
prediction layer based on multi-view embedding.

C. Mixture Feature Embedding

Mixture feature embedding (Mfe) is the combinations of
multi-modal learning and multi-view embedding as shown
in Figure 2. Given the input X1, multi-modal features can
be generated by cTAKES and the extracted semantic modals
mainly include POS mode, concept mode, and syntax mode.
The POS mode aims at catching the property of each word
in input sentences; the concept mode provides knowledge in
specific domains like medicine and serve as a good discrimina-
tor of targets; the syntax mode conveys important dependency
relations between words and the compositionality of a sentence
usually involving phrases acts as a good indicator of the
sentence nature. Due to the significance of syntax mode in
human languages, further feature embedding is processed by
tree-LSTM to provide rich features for semantic-role mode,
which will be discussed more in the following subsection. All
the generated features are firstly fed into shared representation
layer for cross-modal learning and then passed to convolu-
tional layer, max-pooling layer and prediction layer to learn
feature representations as feature tensors for the MfeCNN
model learning. During the model learning, Mfe, on the other
hand, stretches itself to transform multi-modal learning into a
multi-view embedding problem.
g1(f1(xl), x2) = σu(h1 × wu × rul (x1) + buh1 + cx1) (1)

By following the idea of two-view embedding described
in Equation 112, Mfe attempts to find multiple two-view
embeddings (multi-view embedding) for input features X1.
In addition, those multi-view embeddings are obtained from
different modals or different semantic spaces and they are
different from original two-view embeddings, which all are
from word levels. For multi-view feature embedding from
multiple semantic spaces, Equation 1 will be expanded into,

g1(f1(xl), x) = σu(

M∑
j=1

h× wu
j × ruj (xl) + buh+ cxl) (2)

D. Enriched Features with Tree-LSTM

In the tree-LSTM, two different versions are provided,
child-sum tree-LSTM and N -ary tree-LSTM and both variants
have rich network topologies and can incorporate information
from multiple child units. N -ary tree-LSTM takes the order
and the importance of the children into consideration. Here
we employ N -ary tree-LSTM to generate extra feature embed-
dings since the model can catch the subtle importance of each
word features and this should play big roles for the training
of the classification model.

In our work, constituent parser is utilized to parse a sentence
into binary constituents. For example, a sentence with subject,
predicate, and object may be parsed as a noun phrase (NP), the
subject and a verbal phrase (VP). The VP is then parsed into
a verb (V) and another NP (object). Given a constituent tree,
let C(j) denote the set of children of node j. The constituent
tree has at most N branching factors and for each child k, a
separate parameter matrix is introduced to allow N -ary tree
LSTM model to learn more fine-grained conditioning on the
states of a unit’s children than both child-sum tree-LSTM and



the flat LSTM. A sentence like above will assign the verb or
VP the highest weights and the subject NP and the object NP
lower weights.

E. Workable Pipeline

By combining all components discussed above, we obtained
the end-to-end data mapping pipeline as illustrated in Figure
3. The pipeline is playing two stage roles, training stage and
applying stage. In the training stage, the collection reader
component reads the training data, including HL7 message
data, target data and mapping relationship. In the applying
stage, new HL7 messages go through the same pipeline and
are classified by our model and each field of message contents
can be mapped to the target data schema elements.

Source data in HL7 messages format will be preprocessed
by an IBM parser called DFDL (Data Format Description
Language) parser and are converted to a mediated format, HL7
XML. The mediated format helps us to delimitate HL7 content
into segments, fields, and subfields and make it possible to
analyze each part of the contents. The separated HL7 contents
are analyzed by annotators of cTAKES and the CasConsumer
component reads the analysis output from cTAKES. These
results could be considered as NLP features of each HL7 field.
These features are fed into MfeCNN and trained against the
target data schema and established mappings. After the models
are trained and validated, test data can go through the pipeline
with similar preprocessing and feature extraction.
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Reader
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DFDL JAXB 
Parser Feature Extractor

Training Feature Matrix
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Fig. 3. End-to-End Data Mapping Pipeline of MfeCNN

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of our MfeCNN
model on data mapping from HL7 message to CommonSif. We
begin by describing the datasets used for evaluation, followed
by the detailed discussion of experimental settings and final
evaluation. In the evaluation, the results of MfeCNN and other
models are given for comparison.

A. Datasets

Data Sets Data Volume Mappings
I2B2 16000 56372
Customer CDA 2400 37230
Customer HL7 1600 18604
Total 20000 112207

TABLE I
DATA SETS AND MAPPING NUMBERS

Class ID Class Name
0 AL1.3.AllergenCode MnemonicDescription
1 DG1.4.DiagnosisDescription
2 NK1.7.ContactRole
3 NTE.3.Comment
4 OBX.5.ObservationValue
5 PID.11.PatientAddress
6 PID.5.PatientName
7 PV2.3.AdmitReason
8 Remainder
9 TXA.2.DocumentType

TABLE II
TEN TARGET DATA SCHEMA ELEMENTS

The input data standard for our experiments is HL7 mes-
sage v2. We have totally 20000 HL7 documents with each
containing only one HL7 message. We are using 3 data sets
to compose these HL7 message data: I2B2 data sets15 which
contains public clinical notes for NLP research use; sample
de-identified CDA data sets obtained from a hospital which
records patients’ medical treatment; and sample HL7 message
data sets obtained from a healthcare solution provider which
contains hospital charge and discharge, medical treatment and
lab tests. All the data sets are converted to consistent HL7 v2
messages in advance so that we can process different format
data sets with the same pipeline.

All the fields of HL7 data were manually annotated by
domain experts using our target data schema CommonSIF’s
elements, which are considered as the ground truth. Table 1
shows our data sets in the HL7 v2 format with annotated
mappings. We use about 50%, 20%, 30% of overall data sets
for training, validation, and test respectively. Namely, in our
experiment, we use 33662 instances to evaluate our model. In
total, all instances are mapped to 10 classes (See class names
listed in Tables 2) which represent 10 kinds of target data
schema elements.

B. Experimental Settings

Two kinds of baselines were run to evaluate the effects
of mixture feature embedding. Since our model is based on
convolutional neural network, the first baseline deploys a basic
CNN model with the only bag of words as inputs and the
results are listed in Table III. Besides, we used SVM model
to train and test data mapping as well, which enables us
to make comparisons on traditional state-of-the-art machine
learning model. Here both SVM and CNN baseline models
use extracted features from cTAKEs as inputs and results are
shown in Table IV. For the SVM model, we used libsvm16

library to implement the classification function. Both CNN
and MfeCNN were implemented with tensorflow17 with the
same network configuration as described in Section III-B. We
reported standard Support, precision (Pre), recall (Rec) and F1
score for the metrics, which are defined as,

Support = CorrectMappingsFound (3)
Pre = Support/AllMappingsFound (4)
Rec = Support/AllCorrectMappings (5)
F1 = 2 ∗ Pre ∗Rec/(Pre+Rec) (6)



C. Final Results

Class ID Pre% Rec% F% Support
0 46 52 48 566/1070
1 45 36 40 356/988
2 42 50 45 21/42
3 31 42 35 261/621
4 70 30 42 217/722
5 20 37 25 1316/3556
6 67 50 57 12/24
7 56 55 55 72/131
8 67 57 61 13271/23282
9 54 44 48 1420/3227
all 49.8 45.3 47.5 17512/33662

TABLE III
CNN RESULTS WITH THE ONLY BAG OF WORDS

We compared the MfeCNN results with two baseline ap-
proaches using traditional SVM model and basic CNN model
with the same configurations. For all datasets we use: rectified
linear units, filter windows (h) of 3, 4, 5 with dropout rate (p)
of 0.5, l2 constraint (s) of 3, and mini-batch size of 50. Feature
embedding dimensions vary according to the property and total
vocabulary of each feature. Words themselves involve 10000
unique tokens and 200 as the feature map. Concepts involve
30000 unique identifiers and 400 as the feature map while
syntax and pos have much fewer numbers (total about 100),
thus embedding map only needs 20 dimensions. These values
for hyperparameters were chosen via a grid search on the dev
set.

Table 3 reported the baseline results of our data mapping
prediction on test data conducted by the basic CNN model with
the only bag of words as features. Tables 4 and 5 show the
comparison of metrics of three approaches with all extracted
features included. All the results are much better than that of
basic CNN baseline even though the baseline is employing
CNN, an advanced deep learning framework.

Although SVM, CNN, and MfeCNN all lead to very good
data mappings prediction, MfeCNN achieves the best perfor-
mance overall in these classes. Compared with deep learning
model, SVM shows lower recalls as well as F-scores. The
possible reason is that our SVM model is a linear model, which
simply transforms the input to some high dimensional space
to reveal the differences of classes; where deep learning model
has a deep architecture with nonlinear multiple layers which
combine and transform feature layers to layers, that could
help to achieve better classification results. Compared with
CNN, although some row like class 5 (PID.11.PatientAddress)
gets lower metrics due to some default value texts, MefCNN
gets much better results for most of the classes and the
average F1-score is as high as 86.2%. Namely, we achieve
22% improvements than the CNN results. In addition, recently
Lecun et la developed a very deep CNN model with 29
network layers to perform topic classification for ten topics
by given free texts without preprocessing as inputs and the
prediction accuracy achieves 73.4%18.

These results validate that our mixture feature embedding
convolutional neural network approach can indeed map the
customer HL7 messages to canonical data types effectively
and overcome data unbalance to some degree. Comparison
with the results using traditional SVM model and CNN models
shows that the combination of mixture feature embedding
and convolutional neural network allows the development of
sophisticated deep learning model to achieve the excellent
mapping accuracy.

V. CONCLUSION AND FUTURE WORK

In this work, we implemented a novel and sophisticated
deep learning framework MfeCNN for clinic data mapping.
With this framework, we converted the data mapping task to
a multi-label classification problem. Innovatively, we incorpo-
rate multi modalities and multi-view embedding into CNN for
mixture feature tensor generation and classification prediction.

An open source tool cTAKES was utilized to perform
deep language analysis for unstructured free texts so that
rich linguistic features were extracted. In order to make full
use of those features in the multi-modal semantic spaces, we
developed a mixture feature embedding convolutional neural
network to deploy those features. Mixture feature embedding
realized a multi-modal and multi-view approach to digest
features from different semantic spaces. This is quite different
from previous approaches to do feature embedding, which
usually focuses on word spaces. In contrast, we combined
the feature embedding of syntax space and domain space
(medical concepts) as well as word space. Our experimental
results show that our approach achieves satisfactory results. In
addition, the combination of mixture feature embedding and
CNN plays an important role in achieving the high results.

In future work, we will focus on more features as well
as improving the model as well. We may consider to use
deeper network and extend MfeCNN to integrating LSTM and
reinforcement learning so that more generic models can be
developed for diverse data mapping tasks.
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